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Wprowadzenie do Feedback Vertex Set

Dany ispéjny graf G oraz liczba k, pytamy czy da sie, usuwajac
maksymalnie k wierzchotkéw, rozcykli¢ graf. Graf G moze
zawiera¢ petle oraz wielokrotne krawedzie.



Przypomnienie fixed problem tractability

Definicja FPT: Problem L nalezy do FPT wtw gdy jest
parametryzowany parametrem k i istnieje algorytm rozwigzujacy
ten problem w czasie f(k)n(O(1)),

Zazwyczaj chcemy tak przeksztatci¢ problem aby zmniejszy¢ jego
rozmiar do k() i nastepnie uzy¢ dowolne rozwigzanie
wyktadnicze. Zmniejszony problem nazywamy kernelem.



Definicja A-Sciezek

Dla danego grafu G = (V, E) i zbioru A C V A-Sciezke
definiujemy jako $ciezke, ktdrej pierwszy i ostatni wierzchotek
nalezy do A i zaden wierzchotek pomiedzy nie nalezy do A.



Przypomnienie tw. Berge

Foruta Berge'a méwi, ze rozmiar maksymalnego skojarzenia w
grafie G = (V, E) wynosi minxcv3(|V|— occ(V — X) +|X]),
gdzie occ(Y) to ilo$¢ spdjnych sktadowych nieparzystego rozmiaru
w Y. Proste przeksztatcenia pozwalaja uzyska¢ réwnowazna

||

formute minxcv|X|+ X cccl's -



Tw. Gallai

Dla zadanego grafu G = (V/, E) niech A C V. Maksymalna liczba
wierzchotkowo niezaleznych A-$ciezek jest réwna minimum

|X| + ZCCcL‘AQC‘J, gdzie X C Vi C to zbiér spdjnych
sktadowych G’ = (V\X, E).




Dowéd tw. Gallai

Sprowadzamy problem do maksymalnego skojarzenia.

Tworzymy graf G' = (V', E’) z grafu G = (V, E).

» Dla kazdego v € V\A do V' nalezy wierzchotek v oraz jego
kopia v/ pofaczona z v wraz z wszystkimi sasiadami v.

» Kazdy v € A nalezy do V'.



Dowéd tw. Gallai

W grafie G’ rozmiar maksymalnego skojarzenia to | V\A| + p, gdzie
p to maksymalna ilo$¢ wierzchotkowo niezaleznych A-Sciezek w G.
» Zalezno$¢ pomiedzy A-Sciezka w G a skojarzeniem w G'.
» Przeksztatcamy na skojarzenie réwnowazne usuwajac 'cykle’
niezwigzane z A i 'Sciezki. Pozostaje p A-Sciezek.
» W druga strone, jezeli mamy p A-Sciezek, to tworzymy
maksymalne skojarzenie o rozmiarze |V\A].



Dowéd tw. Gallai

Podstawiajac wynik z poprzedniego slajdu do tw. Berge dla grafu

G’ otrzymujemy:

IVNAJ + p = X| + sumecer | ')
ol

p = —IV\A|+ X'| + sumcc

Dla dowolnego v i jego kopii v/ w G’ albo oba v i v/ naleza do X’
albo oba nienalezg do X'.

Gdyby tylko jeden z nich nalezat do X’ to wyjmujac go z X’ nie
mozemy zmieni¢ wartosci prawej strony.



Dowéd tw. Gallai

Zauwazmy, ze

' A
—|V\A| + | X| + sumgrc ¢ L%J = |X| + chd' ch
Gdzie [X|={ve Vv,V e X'}

Co koriczy dowéd, ze p = minxcv|X| + ZCCCUAQClJ



Definicja stokrotki

W danym grafie G = (V, E) v € V tworzy stokrotke rozmiaru k
jezeli istnieje k cykli, ktérych parami jedyny wspdlny wierzchotek
to v.



Znajdowanie stokrotek

W grafie G = (V, E) dla danego wierzchotka v € V mozna w
czasie wielomianowym obliczy¢ jak duza stokrotke tworzy.

Niech G” = (V\{v}, E"”) i A to zbi6r wierzchotkéw bedacych
sgsiadami v w G.

Korzystamy z przeksztatcenia G” w G’ z dowodu tw. Gallai,
znajdujemy maksymalne skojarzenie w G’ w czasie wielomianowym
(alg. Edmondsa). Dodatkowo dostaniemy rowniez zbior X
certyfikujacy rownosc z tw. Berge'a.



Algorytm 1

Algorytm 1 znajduje w czasie wielomianowym w grafie
dwudzielnym G(X, Y, E) taki Z C X, ze N(Z) < 2|Z|, gdzie N(Z)
to zbidr wszystkich sasiadéw wierzchotkéw z Z. Jezeli taki zbiér Z
nie istnieje odpowiada 'brak’.

Stwérz graf G’ poprzez stworzenie kopii X’ X i znajdz maksymalne
skojarzenie w G’. Jezeli kazdy element z X U X’ jest skojarzony to
zbiér Z nie istnieje.



Znajdowanie Z z maksymalnego skojarzenia

Do Z' dodajemy wszystkie nieskojarzone elementy z X U X’ i
nastepnie dopdki Z’ sie zmienia do Z’ dodaj skojarzone z N(Z’)
wierzchotki.

Po zakonczeniu Z = {v : v € Z’ albo istnieje v' t.ze v/ jest kopia v
iV eZ'}. |z > L wiee IN(Z)| < 2Z].



Algorytm 2

Algorytm 2 dla grafu dwudzielnego G = (X, Y, E), spetniajacego
warunki | Y| > 2|X| i kazdy wierzchotek z Y ma sasiada, znajduje
takie X i Y’ t.ze N(Y') = X’ oraz dla kazdego L C X’ L ma
przynajmniej 2|L| sasiadéw.

Iteracyjnie przeksztatcamy graf G : znajdujemy zbiér Z z
algorytmu 1 i usuwamy go wraz z jego sgsiadami. Konczmy kiedy
algorytm 1 nie znajduje zbioru Z.



Proste reguly redukcyjne

Zmieniamy instancje (G, k) na (G', k") taka, ze albo |G| > |G/|
albo k > k'

>

Usuwanie petli: Jezeli wierzchotek v jest pofaczony sam ze
soba zredukuj problem do (G\v, k — 1)

Usuwanie wierzchotkédw matego stopnia: Jezeli wierzchotek v
ma stopien 0, 1 to zredukuj problem do (G\v, k)

Usuwanie wierzchotkéw 2 stopnia: Jezeli wierzchotek jest
stopnia 2 to usuh go i polacz jego sasiadéw.

Usuwanie multikrawedzi : Jezeli krawedZz wystepuje wiecej niz
2 razy usun tyle aby zostaty 2.

Usuwanie stokrotek: Jezeli istnieje v tworzacy stokrotke
rozmiaru ki i ky cykli parami roztacznych i roztacznych od
stokrotki i ki + ko > k to zredukuj problem do (G\v, k — 1)



Trudna regula redukcyjna

Niech X C V, x € V\X i C podzbiér spdjnych sktadowych
G\(V U x) takie, ze:

» Istnieje doktadnie jedna krawedZ pomiedzy x a kazda spdjna
sktadowa z C.
» Kazda spdjna sktadowa z C indukuje drzewo.
» Dla kazdego Z C X liczba spéjnych sktadowych z C majacych
sasiada w Z wynosi conajmniej 2|Z].
Wtedy mozna potaczyé x z wszystkimi wierzchotkami z X
podwdjna krawedzia oraz usuwajac krawedzie pomiedzy x a C.



Trudna regula redukcyjna - dowdd

Tw. Trudna regula jest bezpieczna.
Zatbézmy, ze nie.
Jezeli w zmienionym grafie G’ znajdziemy S’ FVS, to
» w G\S' istnieje cykl
» x nalezy do tego cyklu i nie nalezy do S’. To oznacza, ze
Xc§s
» Kazda krawedz miedzy x a C to most, czyli te krawedzie nie
naleza do cyklu.

» Czyli kazda krawed? cyklu nalezy do G\ S’



Trudna regula redukcyjna - dowdd

Niech S to FVS dla G, pokaze, ze istnieje FVS S’ w G’ i |S| < |S].
Jezeli S zawiera x to koniec.

Niech Y = X\S i Z to zbidr wierzchotkéw S nalezacych do jakiej$
spojnej skfadowej z C. Wtedy S’ = (SU Y)\Z i |Z] >=|Y]|.



Dowdd ograniczenia rozmiaru

Pokaze, ze dla kazdego G = (V, E), jezeli |V| > 4k? mozna uzy¢
jakiejs reguty redukcyjnej. Uzywanie prostych regut jest
mechaniczne, wiec zatozmy, ze G to spdjny graf z wierzchotkami
stopnia min. 3, bez petli i z maksymalnie podwdjnymi krawedziami.
G\S to drzewo, wiec istnieje wiecej niz 4k> — k krawedzi pomiedzy
SaG\S.

Wezmy z S wierzchotek x o stopniu > 4k.



Dowdd ograniczenia rozmiaru

Znajdujemy stokrotke opartg na x i zbiér X. Stopien stokrotki to
p=IX|+ Teccl %54,

» Niech € to ilo$¢ krawedzi pomiedzy spéjnymi sktadowymi
G\ X potaczonych z x wiecej niz jedng krawedzia. Wtedy
IX|+€/3<p<k

> Istnieje ki spdjnych potaczonych jedna krawedzia, takich, ze
zawieraja cykl

> Istnieje kr elementéw z X potaczonych podwdjnymi
krawedziami do x. k; + ko < k.
» Czyli ilo¢ ¢ drzew podtaczonych jedng krawedzig do x to
przynajmniej 4k — | X| — €’ — k.
Skoro 3k > 3|X| + € to ¢ > 2|X| i mozna zaaplikowaé trudna
regute.
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