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Wprowadzenie do Feedback Vertex Set

Dany ispójny graf G oraz liczba k, pytamy czy da się, usuwając
maksymalnie k wierzchołków, rozcyklić graf. Graf G może
zawierać pętle oraz wielokrotne krawędzie.



Przypomnienie fixed problem tractability

Definicja FPT: Problem L należy do FPT wtw gdy jest
parametryzowany parametrem k i istnieje algorytm rozwiązujący
ten problem w czasie f (k)n(O(1)).
Zazwyczaj chcemy tak przekształcić problem aby zmniejszyć jego
rozmiar do kO(1) i następnie użyć dowolne rozwiązanie
wykładnicze. Zmniejszony problem nazywamy kernelem.



Definicja A-ścieżek

Dla danego grafu G = (V ,E ) i zbioru A ⊂ V A-ścieżkę
definiujemy jako ścieżkę, której pierwszy i ostatni wierzchołek
należy do A i żaden wierzchołek pomiędzy nie należy do A.



Przypomnienie tw. Berge

Foruła Berge’a mówi, że rozmiar maksymalnego skojarzenia w
grafie G = (V ,E ) wynosi minX⊂V

1
2(|V | − occ(V − X ) + |X |),

gdzie occ(Y ) to ilość spójnych składowych nieparzystego rozmiaru
w Y. Proste przekształcenia pozwalają uzyskać równoważną
formułę minX⊂V |X |+

∑
c∈Cb

|c|
2 c.



Tw. Gallai

Dla zadanego grafu G = (V ,E ) niech A ⊂ V . Maksymalna liczba
wierzchołkowo niezależnych A-ścieżek jest równa minimum
|X |+

∑
c⊂Cb

|A∩c|
2 c, gdzie X ⊂ V i C to zbiór spójnych

składowych G ′ = (V \X ,E ).



Dowód tw. Gallai

Sprowadzamy problem do maksymalnego skojarzenia.

Tworzymy graf G ′ = (V ′,E ′) z grafu G = (V ,E ).
I Dla każdego v ∈ V \A do V ′ należy wierzchołek v oraz jego

kopia v ′ połączona z v wraz z wszystkimi sąsiadami v .
I Każdy v ∈ A należy do V ′.



Dowód tw. Gallai

W grafie G ′ rozmiar maksymalnego skojarzenia to |V \A|+ p, gdzie
p to maksymalna ilość wierzchołkowo niezależnych A-ścieżek w G .

I Zależność pomiędzy A-ścieżką w G a skojarzeniem w G ′.
I Przekształcamy na skojarzenie równoważne usuwając ’cykle’

niezwiązane z A i ’ścieżki’. Pozostaje p A-ścieżek.
I W drugą stronę, jeżeli mamy p A-ścieżek, to tworzymy

maksymalne skojarzenie o rozmiarze |V \A|.



Dowód tw. Gallai

Podstawiając wynik z poprzedniego slajdu do tw. Berge dla grafu
G ′ otrzymujemy:
|V \A|+ p = |X ′|+ sumc⊂C ′b |c|2 c
p = −|V \A|+ |X ′|+ sumc⊂C ′b |c|2 c

Dla dowolnego v i jego kopii v ′ w G ′ albo oba v i v ′ należą do X ′
albo oba nienależą do X ′.
Gdyby tylko jeden z nich należał do X ′ to wyjmując go z X ′ nie
możemy zmienić wartości prawej strony.



Dowód tw. Gallai

Zauważmy, że
−|V \A|+ |X ′|+ sumc′⊂C ′b |c

′|
2 c = |X |+

∑
c⊂Cb

|A∩c|
2 c

Gdzie |X | = {v ∈ V : v , v ′ ∈ X ′}

Co kończy dowód, że p = minX⊂V |X |+
∑

c⊂Cb
|A∩c|

2 c



Definicja stokrotki

W danym grafie G = (V ,E ) v ∈ V tworzy stokrotkę rozmiaru k
jeżeli istnieje k cykli, których parami jedyny wspólny wierzchołek
to v .



Znajdowanie stokrotek

W grafie G = (V ,E ) dla danego wierzchołka v ∈ V można w
czasie wielomianowym obliczyć jak duża stokrotkę tworzy.
Niech G ′′ = (V \{v},E ′′) i A to zbiór wierzchołków będących
sąsiadami v w G .
Korzystamy z przekształcenia G ′′ w G ′ z dowodu tw. Gallai,
znajdujemy maksymalne skojarzenie w G ′ w czasie wielomianowym
(alg. Edmondsa). Dodatkowo dostaniemy rowniez zbior X
certyfikujacy rownosc z tw. Berge’a.



Algorytm 1

Algorytm 1 znajduje w czasie wielomianowym w grafie
dwudzielnym G(X ,Y ,E ) taki Z ⊂ X , że N(Z ) < 2|Z |, gdzie N(Z )
to zbiór wszystkich sąsiadów wierzchołków z Z . Jeżeli taki zbiór Z
nie istnieje odpowiada ’brak’.

Stwórz graf G ′ poprzez stworzenie kopii X ′ X i znajdź maksymalne
skojarzenie w G ′. Jeżeli każdy element z X ∪ X ′ jest skojarzony to
zbiór Z nie istnieje.



Znajdowanie Z z maksymalnego skojarzenia

Do Z ′ dodajemy wszystkie nieskojarzone elementy z X ∪ X ′ i
następnie dopóki Z ′ się zmienia do Z ′ dodaj skojarzone z N(Z ′)
wierzchołki.
Po zakończeniu Z = {v : v ∈ Z ′ albo istnieje v’ t.że v ′ jest kopia v
i v ′ ∈ Z ′}. |Z | ≥ |Z

′|
2 , więc |N(Z )| < 2|Z |.



Algorytm 2

Algorytm 2 dla grafu dwudzielnego G = (X ,Y ,E ), spełniającego
warunki |Y | > 2|X | i każdy wierzchołek z Y ma sąsiada, znajduje
takie X ′ i Y ′ t.że N(Y ′) = X ′ oraz dla każdego L ⊂ X ′ L ma
przynajmniej 2|L| sąsiadów.
Iteracyjnie przekształcamy graf G : znajdujemy zbiór Z z
algorytmu 1 i usuwamy go wraz z jego sąsiadami. Kończmy kiedy
algorytm 1 nie znajduje zbioru Z .



Proste reguly redukcyjne

Zmieniamy instancję (G , k) na (G ′, k ′) taką, że albo |G | > |G ′|
albo k > k ′.

I Usuwanie pętli: Jeżeli wierzchołek v jest połączony sam ze
sobą zredukuj problem do (G\v , k − 1)

I Usuwanie wierzchołków małego stopnia: Jeżeli wierzchołek v
ma stopien 0, 1 to zredukuj problem do (G\v , k)

I Usuwanie wierzchołków 2 stopnia: Jeżeli wierzchołek jest
stopnia 2 to usuń go i polacz jego sąsiadów.

I Usuwanie multikrawędzi : Jeżeli krawędź występuje wiecej niż
2 razy usuń tyle aby zostały 2.

I Usuwanie stokrotek: Jeżeli istnieje v tworzący stokrotkę
rozmiaru k1 i k2 cykli parami rozłącznych i rozłącznych od
stokrotki i k1 + k2 > k to zredukuj problem do (G\v , k − 1)



Trudna regula redukcyjna

Niech X ⊂ V , x ∈ V \X i C podzbiór spójnych składowych
G\(V ∪ x) takie, że:

I Istnieje dokładnie jedna krawędź pomiędzy x a każdą spójną
składową z C .

I Każda spójna składowa z C indukuje drzewo.
I Dla każdego Z ⊂ X liczba spójnych składowych z C mających

sąsiada w Z wynosi conajmniej 2|Z |.
Wtedy można połączyć x z wszystkimi wierzchołkami z X
podwójną krawędzią oraz usuwając krawędzie pomiędzy x a C .



Trudna regula redukcyjna - dowód

Tw. Trudna regula jest bezpieczna.
Załóżmy, że nie.
Jeżeli w zmienionym grafie G ′ znajdziemy S ′ FVS, to

I w G\S ′ istnieje cykl
I x należy do tego cyklu i nie należy do S ′. To oznacza, że

X ⊂ S ′

I Każda krawędź miedzy x a C to most, czyli te krawędzie nie
należą do cyklu.

I Czyli każda krawędź cyklu należy do G ′\S ′



Trudna regula redukcyjna - dowód

Niech S to FVS dla G , pokaże, że istnieje FVS S ′ w G ′ i |S ′| ≤ |S|.
Jeżeli S zawiera x to koniec.
Niech Y = X\S i Z to zbiór wierzchołków S należących do jakiejś
spójnej składowej z C . Wtedy S ′ = (S ∪ Y )\Z i |Z | >= |Y |.



Dowód ograniczenia rozmiaru

Pokażę, że dla każdego G = (V ,E ), jeżeli |V | > 4k2 można użyć
jakiejś reguły redukcyjnej. Używanie prostych reguł jest
mechaniczne, więc założmy, że G to spójny graf z wierzchołkami
stopnia min. 3, bez pętli i z maksymalnie podwójnymi krawędziami.
G\S to drzewo, więc istnieje więcej niż 4k2 − k krawędzi pomiędzy
S a G\S.
Weźmy z S wierzchołek x o stopniu > 4k.



Dowód ograniczenia rozmiaru

Znajdujemy stokrotkę opartą na x i zbiór X . Stopień stokrotki to
p = |X |+

∑
c⊂Cb

|A∩c|
2 c.

I Niech e′ to ilość krawędzi pomiędzy spójnymi składowymi
G\X połączonych z x więcej niż jedną krawędzią. Wtedy
|X |+ e′/3 ≤ p ≤ k

I Istnieje k1 spójnych połączonych jedną krawędzią, takich, że
zawierają cykl

I Istnieje k2 elementów z X połączonych podwójnymi
krawędziami do x . k1 + k2 ≤ k.

I Czyli ilość c drzew podłączonych jedną krawędzią do x to
przynajmniej 4k − |X | − e′ − k.

Skoro 3k ≥ 3|X |+ e′ to c ≥ 2|X | i mozna zaaplikować trudną
regułę.
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