Problem 1 (induction) (2 points)

Define:

\[\text{SUM}(n) = \sum_{\emptyset \neq S \subseteq \{1,2,\ldots,n\}} \frac{1}{\text{product}(S)} \]

where \(\text{product}(S) \) is the product (multiplication) of all integers from \(S \). In other words \(\text{SUM}(n) \) is the sum of all terms \(\frac{1}{\text{product}(S)} \), over all possible nonempty subsets of \(\{1,2,\ldots,n\} \), for example:

\[\text{SUM}(2) = \frac{1}{1} + \frac{1}{2} + \frac{1}{1} \]
\[\text{SUM}(3) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{12} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{12} + \frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac{1}{12} + \frac{1}{2} \]

(a) Give closed formula for \(\text{SUM}(n) \); (b) Show by induction correctness of the formula for \(\text{SUM}(n) \).

Problem 2 (analysis of simple algorithms) (2 points)

What is the value of \(s \) returned in each one of the functions below as a function of \(n \)? Use asymptotic notation to express this value in terms of \(n \). Write recurrence equations which relate \(A(n) \) to \(A(n-1) \) and \(B(n) \) to \(B(n-1) \).

```c
int A(int n) {
    int i,s; s=2;
    for(i=1;i<=n;i++) s += 5;
    return(s);
}

int B (int n) {
    int i,s; s=1;
    for(i=0;i<=n;i++) s=4*s+1;
    return(s);
}
```

Problem 3 (linear time algorithm) (2 points)

For the integer table \(A[0 \ldots n] \) we define the table \(\text{LEFT} \) as follows for \(1 \leq i \leq n \):

\[\text{LEFT}[i] = \max \{ k : (A[k] < A[i] \text{ and } 0 \leq k < i) \text{ or } (k = -1) \} \]

Write a program in C++ (as short as possible) which reads \(n + 1 \) numbers (the values of \(A[0] \), \(A[1] \), \(A[2] \) ... \(A[n] \)) and then computes in \(O(n) \) time (in total) and writes the values \(\text{LEFT}[1] \), \(\text{LEFT}[2] \) ... \(\text{LEFT}[n] \).

Problem 4 (asymptotics) (2 points)

Prove formally the following facts:

(a) \(n^3 + 10 = O((\frac{1}{10}n - 1)^3) \)

(b) \(1 \times 2^1 + 2 \times 2^2 + 3 \times 2^3 + 4 \times 2^4 + \ldots n \times 2^n = O(n \times 2^n) \)