CIS 435, Fall 2003 Additional Homework (Due: November 12, 2003)

Solve ALL the problems. Collaboration is prohibited

9 points total

Problem 1. (2 points)
Assume a given integer array $A[1\ldots n]$ is sorted. Write in the pseudocode a function $\text{FIND}(A, n)$ working in $O(n)$ time which finds an element with the largest number of occurrences in A.

In case there is more than one element possible the result is the smallest one.

For example if $A = [2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6]$ then $\text{FIND}(A, 15) = 5$.

Problem 2. (3 points)
Assume n is a positive integer ($n \geq 1$). Write an exact closed formula for $A(n)$ and express $A(n)$ using asymptotic notation $O(f(n))$ (where $f(n)$ is as simple as possible), $A(n)$ is the value computed by the following function ($i \% 3$ denotes here $i \mod 3$)

```c
int A(int n)
{
    int i, s ; s =0 ;
    for(i=1; i<=3*n; i++)
        s = s + (i \% 3) * i ;
    return(s) ; }
```

Problem 3. (2 points)
Let F_n be the n-th Fibonacci number:

$$F_0 = 0, \quad F_1 = 1, \quad F_2 = 1, \quad F_3 = 2, \quad F_4 = 3, \quad F_5 = 5, \quad F_6 = 8, \ldots$$

These numbers satisfy: $F_{n+2} = F_{n+1} + F_n$.

Prove by induction that for $n > 0$:

$$F_0 + F_2 + F_4 + F_6 + \ldots F_{2n} = F_{2n+1} - 1.$$

Problem 4. (2 points)
Assume we have the array

$$A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].$$

How will this array look after performing $\text{Build-Max-Heap}(A)$ using the description of the function $\text{Build-Max-Heap}(A)$ from the textbook.